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The model of Mu¨ller and Polezhaev for periodic precipitation is applied to a salt system that can dissolve in
excess diffusing electrolyte due to complex formation. A typical example is the Co(OH)2 Liesegang pattern
from Co2+ and NH4OH, which propagates due to band formation ahead and band dissolution at the tail of the
stratum (Co(OH)2 dissolves in excess ammonium hydroxide forming Co(NH3)6

2+). Diffusion profiles are
constructed by plotting the computed distance of the last band (dlb) and that of the first band (dfb) versus
time. The propagation is investigated under two main conditions: at fixed concentration of the inner electrolyte
(X0) while varying that of the outer electrolyte (Y0), and the reverse (i.e., at fixedY0 while varyingX0). While
in the first case, the propagation is faster at higherY0, the opposite trend is obtained whenX0 is varied,
exactly reproducing the experimental observations in the literature on Co(OH)2. A correlation close to linear
is found between the dissolution and precipitation events. The advancing banded patterns are also displayed
in a special map representation combining the diffusion profiles with the band contours. A special criterion
is developed, delineating the situations where either a single pulse or a stratum of bands propagates.

1. Introduction

A Liesegang1,2 pattern is a stratification of parallel precipitate
bands obtained when two coprecipitate ions interdiffuse in a
gel medium. A variety of systems yielding sparingly soluble
salts exhibits this fascinating phenomenon in a wide collection
of bibliographic sources built up over more than a hundred years.
The dynamics of Liesegang banding is very rich and can be
very complex, involving the coupling of diffusion and precipita-
tion processes in a nonequilibrium regime. Despite this, most
of the well-known Liesegang patterns are stationary, in the sense
that the bands are “locked” in their positions once they are
formed. In that context, Liesegang structures were viewed by
Ross and co-workers3 as an example of Turing4 patterns. A small
category of Liesegang systems is, however, dynamic, displaying
a propagation of the whole pattern behind the diffusing
electrolyte. This propagation is due to the dissolution of
precipitate bands in excess electrolyte. Thus, in a vertical tube,
new bands form at the bottom, and old ones dissolve at the
top, yielding an apparently moving stratum of bands down the
tube. A typical example of this class of periodic structures is
the Co(OH)2 system5 from Co2+ and NH4OH. The precipitate
Co(OH)2 dissolves in excess ammonium chloride6 due to
complexation of Co2+ with ammonia7 (see the chemical reaction
scheme in section 2). Thus the precipitation of Co(OH)2

competes with its own dissolution in excess ammonium chloride,
leading to this precipitation/dissolution scenario. A rich dynam-
ics of this propagating pattern hence emerges, involving the
velocities of front propagation, the correlation between the
events at the top and the bottom of the tube, and even a chaotic
oscillation of the total number of bands within the traveling
zone.5

In the present paper we attempt to account for the behavior
observed experimentally, by proposing a model for the system

of chemical reactions involved. We then study the coupling of
those precipitation/dissolution reactions to the diffusion of the
aqueous species involved, using the model of Mu¨ller and
Polezhaev.8 The model incorporates both the nucleation of small
particles (nuclei) and their subsequent growth into large particles
as a concerted mechanism for precipitation. The aims of the
present study may now be summarized as follows:

1. Predict the formation of the pattern of Co(OH)2 bands and
monitor its time evolution to demonstrate its advancement in
space through precipitation and dissolution.

2. Study the effect of varying the concentration of NH4OH
(outer electrolyte) on the spatio-temporal evolution of the
pattern, by obtaining the diffusion profiles and the plots of
spatial precipitate distribution (bands).

3. Study the effect of varying the concentration of Co2+ (inner
electrolyte) on the spatio-temporal evolution of the pattern, by
obtaining the diffusion profiles and the plots of spatial precipitate
distribution (bands).

4. Investigate the correlation between the dissolution and
precipitation events at the two ends of the band stratum.

5. Compare the theoretical results with the experimental
findings5.

2. Model

Consider the following reaction of the precipitation of Co-
(II) hydroxide and its subsequent dissolution in excess ammonia:

By introducing a simplified reaction scheme incorporating both
precipitation and dissolution (shown below), we adopt the model
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Co2+(aq)+ 2NH4OH(aq)98
k

2NH4
+(aq)+ Co(OH)2(s)

Co(OH)2(s) + 6NH4
+(aq)98

k′

Co(NH3)6
2+(aq)+ 2H2O(l) + 4H+(aq)
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of Müller and Polezhaev (MP)8 for the analysis of the reaction-
diffusion equations. The weakly soluble precipitate Co(OH)2(s)
is usually described by a continuous spatio-temporal particle
size distribution function. However, in the MP model, two
particle sizes, small and large, are used to characterize the
precipitate.

Let F̃ denote the average density of solid salt in the form of
small particles (called nuclei in ref 8), andF the average density
of solid salt in the form of big particles. Letc be the
concentration of the dissolved salt Co(OH)2(aq). If c exceeds
some critical valuec3, small particles (nuclei) nucleate in the
salt solution with a rate of nucleationV1. If c exceeds some
other parameterc2, nuclei are transformed into large particles
at a rateV3; otherwise, they dissolve at a rateV2. Finally, if c
exceeds a certain valuec1, large particles grow at a rateV4.

2.1. Evolution Equations. We introduce the following
variables

The above reaction scheme is reduced to a simpler form as
follows:

We assume that the dissolved salt of concentrationc is different
from the complex Co(NH3) 6

2+(aq), called P in eq 2. The
conservation equations for the electrolyte concentrations dif-
fusing and reacting are given by

where DX and DY are diffusion coefficients of X and Y,
respectively,∇2 is a one-dimensional Laplacian, andk is a
precipitation rate constant. The addition of excess Z induces
dissolution of the precipitate in the form of the complex Co-
(NH3)6

2+(aq). The evolution of Z is given by

whereDZ is the diffusion coefficient of species Z andk′ denotes
the rate constant of dissolution.

The dynamics of the average particle sizes,F̃ andF, is given
by

The concentration of dissolved salt,c, is given by

whereDc is the diffusion coefficient of dissolved salt.

We still have to specify the explicit form of the rate function
Vi(c) to complete the description of the problem. It is shown8

that the shape of theVi(c)’s does not affect the qualitative
appearance of the result. Therefore, we only assume that they
are monotonic functions ofc as follows:

whereR, â, γ, andδ are rate constants andθ(x) is the Heaviside
function.

2.2. Numerical Method. Equations 3-8 were solved nu-
merically with the following initial conditions

and the following no-flux boundary conditions

wherex is the spatial independent variable andL is the length
of the tube in which the reaction is taking place. The lengthL
is partitioned into an equally spaced mesh of 400 grid points.
Equations 3-8 are then discretized according to a second-order
centered finite difference scheme to compute the Laplacians.
The resulting ordinary differential equations are solved using
Gear’s method9 for stiff-differential equations. We decreased
the size of the mesh by increasing the number of grid points to
800 keeping the same length. The results did not change
qualitatively. The number of bands and the spacing remained
the same.

3. Results

The spatial distribution of the precipitate at a certain timet
is given by the functionF(t). Figure 1 shows the time evolution
of the average particle densityF. We clearly see that the pattern
of bands advances behind the NH4OH front, by virtue of the
dissolution of bands at the back and the formation of new ones
at the front. This is equivalent to band dissolution at the top
and band formation at the bottom in a vertical tube, resulting
in the migration of the whole pattern down the tube. We now
look at the diffusion profiles obtained by plotting the distance
of the last band from the origin (dlb) and that of the first band
(dfb) with time. (The origin is defined here as the junction
between the two solutions: Co2+ (inner) and NH4OH (outer).)
The resulting curves are shown in Figure 2. The representation
used is a contour profile-pattern map, highlighting the locations
of the bands, together with a space-time plot obtained by
drawing contour lines joining the edges of the first and the last
bands (actually their locationsx) at a specific timet. The white
contour curves thus represent the plots ofdlb anddfb versus time
t. The correlation between the two distancesdfb and dlb were
shown experimentally5 to be linear. We test our model by
constructing such a correlation plot, obtained by plottingdlb

versusdfb, as depicted in the inset of Figure 2. A clear correlation
is seen to exist between the two variables (though not perfectly
linear), generally in good agreement with the experimental result.
The nonlinearity is attributed to the complexity of the problem

X ) Co2+(aq)

Y ) NH4OH(aq)

Z ) NH4
+(aq)

A ) Co(OH)2(s)

X + 2Y 98
k

2Z + A (1)

A + 6Z 98
k′

P (2)

∂X
∂t

) DX∇2X - kXY2 (3)

∂Y
∂t

) DY∇2Y - 2kXY2 (4)

∂Z
∂t

) DZ∇2Z - 6k′Z6F + 2kXY2 (5)

∂F̃
∂t

) V1(c) - [V2(c) + V3(c)]F̃ (6)

∂F
∂t

) V3(c)F̃ + V4(c)F - 6k′Z6F (7)

∂c
∂t

) Dc∇2c + kXY2 - V1(c) + V2(c)F̃ - V4(c)F + 6k′Z6F
(8)

V1(c) ) R(c - c3)θ(c - c3) (9)

V2(c) ) â(c2 - c)θ(c2 - c) (10)

V3(c) ) γ(c - c2)θ(c - c2) (11)

V4(c) ) δ(c - c1)θ(c - c1) (12)

X(t ) 0, x) ) X0θ(x - L/2)

Y(t ) 0, x) ) Y0θ(L/2 - x)

F̃(t ) 0, x) ) F(t ) 0, x) ) Z(t ) 0, x) ) c(t ) 0, x) ) 0

n‚∇X|x)L ) n‚∇Y|x)L ) n‚∇Z|x)L ) n‚∇c|x)L ) 0
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and the existence of a large number of parameters. A similar
nonlinear correlation was obtained upon varying the stoichio-
metric coefficient of the speciesZ in eq 2 and upon using equal
values of the rate coefficientsk andk′. Some additional notes
on the properties of the model used and their impact on the
obtained results are presented in the Discussion.

We now turn our attention to the effect of varying the
concentration of either the outer or the inner electrolyte on
pattern propagation. Figure 3 highlights the positions of the band
strata at a fixed time, but at different initial concentrations of
the outer electrolyte (Y0). We see that the pattern propagates
faster at a higher concentration of outer electrolyte, as indicated
by a further location of the last band (at the same given time)
when the initial concentration is higher. The corresponding
diffusion profiles are depicted in Figure 4: the higher concen-
tration curves lie above the lower concentration ones. Note that
the latter plots could also be inferred from Figure 3, by joining

the band edges with a contour line (not shown) for the three
differentY0 concentrations. Next, we focus on varying the initial
concentration of the inner electrolyte (X0), a situation less
frequently studied both experimentally and theoretically. Figure
5 shows diffusion profiles (distance of last banddlb versus time
t) at different values ofX0. We remark that exactly the opposite
trend (to the one seen in Figure 4) is obtained, i.e., the lower
concentration (X0) curves lie above the high concentration ones.
Thus the pattern advances faster in a lowerX domain, reproduc-
ing the experimental result for Co(OH)2

5 (with X ≡ [Co2+]).
The corresponding band patterns (plots ofF versus space) are
shown in Figure 6. The speed of propagation is higher at lower
X0, as indicated by the position of the last band at the fixed
time reported. We also note that the band spacing at a given
spatial position decreases asX0 increases.

We now focus on the variation of the distance of first band
(dfb) with time. We investigate the effect of varying both the

Figure 1. Time evolution of a propagating Liesegang pattern in 1D.
The pattern advances by dissolution of old bands at the top of the tube
(at the left here) and formation of new ones at the bottom (right). Model
parameters:X0 ) 10; Y0 ) 100; Z0 ) 0; F̃ ) 0; F ) 0. k ) 1.0 ×
10-5; k′ ) 1.0× 10-4; DX ) DY ) Dc ) 1.0× 10-5; DZ ) 1.0× 10-2;
c1 ) 2.1; c2 ) c3 ) 3.0; R ) 0.02; â ) 0.01; γ ) 0.01; δ ) 0.002.
Key: (a) t ) 8 × 104; (b) t ) 35 × 104; (c) t ) 125 × 104.

Figure 2. Diffusion profiles plotted as distance of last band (dlb) and
distance of first band (dfb) versus time for the pattern shown in Figure
1. The bands are also shown in the location of their appearance. This
representation is referred to as a contour profile/pattern map. Model
parameters same as in Figure 1. The inset shows a correlation plot (dfb

versusdlb at a given time). The correlation is close to linear.

Figure 3. Profile-pattern maps of Liesegang bands at different initial
concentrations of outer electrolyte (Y0), computed all fromt ) 0 to
t ) 125 × 104; X0 ) 10: (a)Y0 ) 100; (b)Y0 ) 200; (c)Y0 ) 300.
The propagation is faster at higherY0, as indicated by a further migration
of the whole stratum to the right (see notably the position of the last
band).

Figure 4. Diffusion profiles obtained from the plot of distance of last
band (dlb) versus timet × 104, varying the concentration of outer
electrolyteY0: X0 ) 10. Key: (solid curve)Y0 ) 100; (dotted curve)
Y0 ) 200; (dashed curve)Y0 ) 300. The propagation is faster at higher
Y0 manifested here in the trend whereby the higherY0 curves lie above
the lowerY0 curves.
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inner and the outer electrolytes on the diffusion/dissolution
profiles. Figure 7a shows plots ofdfb versus time at different
initial concentrations ofY (Y0); while Figure 7b displays the
same plots varying the initial concentration ofX (X0). Exactly
the same trends as fordlb (seen in Figures 4 and 5) are obtained,
thus clearly correlating the band dissolution and band formation
events at both ends of the pattern, as suggested by the plot in
the inset of Figure 2 and the experimental results of Nasreddine
and Sultan.5

So far, we chose the constantc2, the equilibrium threshold
concentration of small particles, to be greater thanc1, the
equilibrium threshold concentration of large particles. In other
words, we are working in the case where small particles are
more soluble than large particles, i.e., in the context of the
Ostwald ripening instability10,11whereby small particles dissolve
and diffuse then their masses are deposited on the large particles
causing them to grow.12 If we now reverse our choice of the
parametersc1 andc2 in such a way thatc2 ) c3 < c1,then we
obtain a situation depicted in Figure 8, where a single band of

precipitate propagates and grows thicker in time, an observation
reported in experimental studies on the Cr(OH)3

13,14and HgI215,16

systems. This result is particularly interesting, as it could throw
light on the system selectivity for single pulse versus band
stratum propagation, and warrants further investigation. It could
suggest ways of controlling the experimental conditions for the
selection of either type of propagating pattern.

4. Discussion

The above study allowed a comparison of the properties of
a migrating Liesegang pattern observed experimentally5 with
the dynamics of banded precipitation and dissolution conjectured
using an existing theoretical model.8 The effect of varying the
initial concentrations of the outer and inner electrolytes repro-
duced and confirmed the experimental trends.

The formation of Liesegang bands characterizes the front
propagation and pattern formation in reaction-diffusion systems
where precipitation reactions are on the scene.17 Theories of
precipitate patterning are numerous and have been extensively
reviewed.2,17-19 The model of Mu¨ller and Polezhaev (MP),8

applied here, is one of the most comprehensive theories, as it
incorporates supersaturation, nucleation, and kinetics of particle
growth as precipitation properties coupled to diffusion. Our

Figure 5. Diffusion profiles obtained from the plot of distance of last
band (dlb) versus timet × 104, varying the concentration of inner
electrolyteX0: Y0 ) 100. Key: (solid curve)X0 ) 9; (dotted curve)
X0 ) 11; (dashed curve)X0 ) 17. The opposite trend (to the one while
varyingY0) is obtained. The propagation is faster in a lowerX0 domain.

Figure 6. Profile-pattern maps of Liesegang bands varyingX0

(computed all fromt ) 0 to t ) 125 × 104): Y0 ) 100. Key: (a)
X0 ) 9; (b) X0 ) 11; (c)X0 ) 17. The propagation is slower at higher
X0, indicated notably by a location of the last band which is closer to
the interface (origin) asX0 is increased.

Figure 7. (a) Variation of distance of first band (dfb) with time t ×
104, at three differentY0 values: X0 ) 10. Key: (solid curve)Y0 )
200; (dotted curve)Y0 ) 300; (dashed curve)Y0 ) 400. (b) Variation
of distance of first band (dfb) with time t × 104, but now varyingX0:
Y0 ) 100. Key: (solid curve)X0 ) 9; (dotted curve)X0 ) 10; (dashed
curve)X0 ) 11. Exactly the same trend as fordlb with the Y0 andX0

variations (shown in Figures 4 and 5 respectively) is obtained.
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study adds to the previous model dissolution due to complex
formation, a situation less frequently studied6,20 theoretically.
A profound comparison between the MP model used in this
paper and other exisiting models is unfortunately not very
feasible for two main reasons: (1) Almost all the work in the
literature treats the precipitation reaction X+ Y f A (where
X and Y are coprecipitate ions and A is the precipitate) alone
and does not consider the redissolution phenomenon due to
complex ion formation. (2) All the recent theories focus mostly
on the spacing law (xn+1/xn ) 1 + p),21-23 the width law (wn ∼
xn

R) (xn and xn+1 are the locations of bandsn and n + 1,
respectively, andwn is the width of thenth band.)21,24 and the
dependence of the spacing coefficientp on the initial concentra-
tions of outer and inner electrolytessthe so-called Matalon-
Packter law.22 The main feature of interest in the present work
is to simulate the propagation of the pattern and study the
dissolution and precipitation events as they couple to diffusion.
A discussion of the usefulness and feasibility of the MP model
in addressing the problem of concern here is nevertheless
relevant. The model is an extension of a class of theories that
involve an intermediate species C in the precipitation reaction
of the form: X + Y f ... C ... f A, where C could be a
molecule, a droplet, or a colloid particle (here a small particle
or nucleus). While in the original Ostwald theory25 only the
nucleation threshold is required, such schemes always involve
two thresholds: one for nucleation and one for particle growth.
On the other extreme, theories of postnucleation patterning,26-28

based on an instability of an initial sol of different particle sizes,
predict patterning in nucleation free systems. In MP, the model
is enriched by considering three threshold values (c1, c2, and
c3), wherein a distinction is made between the transition to large
particles (c > c2) and the growth of those particles (c > c1). At
the same time, it preserves a simple form of the rate equations
(9)-(11). However, it appears from our choice of parameters
(see captions of Figures 1 and 8) thatc2 does not play a crucial
role as it is taken to be equal toc3 whether the latter is<> c1. In
other words, the dynamics could perhaps require only a
transition from the formation of nuclei to their subsequent
growth into particles, thus reducing to the two-threshold

problem. When we used distinct values ofc2 and c3, no
convergence in the numerical calculation could be attained. The
problem hence warrants further exploration in that direction.
Note that nucleation was yet differentiated from the dissolution
of the nuclei or their transition into large particles by choosing
R to doubleâ ) γ. Note further that the casec2 ) c3 is in
conformity with the situation encountered in the original MP
paper. Furthermore, in the present treatment, no constraint was
imposed on the redissolution of the precipitate via reaction 2
except a control of the rate parameterk′ (see eqs 7 and 8) for
the sake of simplicity; i.e., no stepwise threshold values were
involved in reaction 2. This latter condition constitutes the main
variant of the model. Thus we see that so many parameters enter
in that complex dynamics that a wide variety of modifications
can be introduced and tested. A correction for the nonlinear
correlation (section 3, inset of Figure 2) could perhaps be
achieved via a careful navigation through the ranges of the
diverse parameters.

In the modeling of a geochemical reaction scheme, dissolution
was introduced in a study20 based on the Ostwald cycle25 to
simulate the dissolution of pyrite (an iron sulfide mineral) by
oxygen-rich water infiltrating through the rock medium. The
subsequent deposition of goethite (an iron oxide mineral) behind
the pyrite dissolution front ranged from steady pulse to “wiggle”
structure to Liesegang bands as the nucleation rate parameter
was varied.

In a following paper,29 we investigate the influence of an
applied constant electric field on the dynamics of pattern
formation and propagation. The presence of the field was
shown30 to strongly alter the dynamics in the Co(OH)2 system
and modify the morphology of the bands. An electric field was
also shown to strongly control the propagation of a single Cr-
(OH)3 precipitate ring (like the one obtained here) in a two-
dimensional gel medium.14 In the theoretical study currently
under inquiry, we also attempt to model the kinetics of that
latter system. A variety of phenomena and diversity in structure
are therefore expected to emerge.
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